The reversibility of canine vein-graft arterialization.

Fann JI, Sokoloff MH, Sarris GE, Yun KL, Kosek JC, Miller DC.
Department of Cardiovascular Surgery, Stanford University School of Medicine, Calif.

We assessed the reversibility of functional and morphological changes of arterialized vein segments by returning them to the venous circulation. Thirteen dogs underwent right carotid and femoral veno-arterial grafting. After 12 weeks, veno-arterial grafts were removed for contractility (norepinephrine [NE] and 5-hydroxytryptamine [5-HT]) and morphometric analyses; the remaining segments were used as left jugular and femoral veno-venous grafts. After another 12 weeks, the veno-venous grafts were harvested. To NE, veno-arterial grafts (ED50, 5.4 +/- 0.1 [-log M]) were less sensitive than control veins (ED50, 6.0 +/- 0.2) or veno-venous grafts (ED50, 6.4 +/- 0.2) but were more sensitive than control arteries (ED50, 4.0 +/- 0.1); the maximum tension of veno-arterial grafts (6.2 +/- 0.6 g) was greater than that of veins, less than that of arteries (9.8 +/- 1.0 g), and comparable with that of veno-venous grafts (7.1 +/- 1.1 g). To 5-HT, veno-arterial (ED50, 7.5 +/- 0.2) and veno-venous (ED50, 7.3 +/- 0.2) grafts were more sensitive than arteries (ED50, 6.0 +/- 0.3), while the vein was unresponsive; the maximum tension of veno-arterial grafts (5.0 +/- 0.7 g) was less than that of arteries (6.9 +/- 0.9 g) and greater than that of veno-venous grafts (1.4 +/- 0.3 g). PGI2 production in veins (3.6 +/- 0.8 ng/ml), veno-arterial grafts (3.9 +/- 0.8 ng/ml), and veno-venous grafts (3.3 +/- 0.9 ng/ml) was comparable and less than that of arteries (6.4 +/- 0.9 ng/ml). Veno-arterial graft intimal thickness (127 +/- 8 microns) and intimal area (15.6 +/- 1.8 x 10^3 microns^2) tended to be greater than that in the veno-venous graft (113 +/- 9 microns and 12.4 +/- 1.8 x 10^3 microns^2); also, the veno-arterial graft medial area (103.0 +/- 7.3 x 10^3 microns^2) was greater than that of the veno-venous graft (80.3 +/- 6.9 x 10^3 microns^2), thereby resulting in a similar relative intimal area (13 +/- 1%). Therefore, some changes associated with arterialization, for example, adrenergic sensitivity, maximum tension to 5-HT, medial thickening, and perhaps intimal hyperplasia, reverted toward venous values when replaced in the venous environment, possibly due to variations in pressure, flow, shear stress, and/or graft preparation techniques. Luminal PGI2 was unchanged in the grafts, implying that graft contractility was not modulated by luminal PGI2.

PMID: 2225440 [PubMed - indexed for MEDLINE]